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EXECUTIVE SUMMARY

This report contains a summary of two of the three earlier interim reports together
with the most recent results on image reconstruction. At the outset of this phase of
the project the intention was to work at Fort Belvoir so that ground information could
be obtained more readily. The first report that we did for this project described the
site and the proposals. After Dr Oliver’s visit to TEC in February 1996 Mr Slocum
and his team decided that we could achieve more in the time by continuing to work on
the Fort Benning data. This would avoid the preliminary data analysis of Fort Belvoir
that had already been done for Fort Benning. There was still much to do on the Fort
Benning data, as will be seen from Parts III and IV of this report. In addition
to the work on the remotely sensed data we were also asked to investigate Paul
Krause’s climate data (Part I) and to evaluate Genstat and Isatis for geostatistical
analysis (Part II). Part of the analysis of the climate data was carried out while
Dr Oliver was at TEC in February 1996; the remainder was done in the U. K. The
climatic variables for the eastern U. S. A. were estimated by both auto- and cokriging,
and the results compared with the validation data. In general cokriging produced
more precise estimates than autokriging. Part I1I describes the results of an optimal
sampling analysis, of kriging from the SPOT information at Fort Benning and of
a kriging analysis to filter the imagery so that the short- and long-range structures
present could be distinguished more clearly. The final section of the report (Part IV)
describes the most recent work on data compression and reconstruction. Part of the
original area analysed was chosen for this analysis. The 10 000 pixels of Benncut were
sampled at different intensities. The sample data were then used for estimation with
the variogram model by kriging and conditional Gaussian sequential simulation. We
compare the results of these two methods for reconstructing the image information
after removing a large proportion of the data. The results show that with a good
variogram model it is possible to restore the data well from 25% of the original

values. Kriging provides the more precise local values, but simulation retains the
original degree of variation.
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PART I: A COMPARISON OF GENSTAT AND ISATIS

For this part of the project we were asked.to compare Isatis with Genstat. Isatis is a
package designed specifically for geostatistics, whereas Genstat is much more general,
though it now contains routines for geostatistics. In the event we did not have Isatis,
and so we could not evaluate it adequately or compare it fairly with Genstat (Genstat
5 Committee, 1987. We treat Isatis very briefly therefore before describing Genstat
in more detail.

Isatis is the third of a series of geostatistical programs written by staff of the
Centre de Géostatistique of the Paris School of Mines. In these the basic algorithms
have remained much the same, but the interface to the user has been much improved
in the light of experience. The program contains a comprehensive set of routines for
geostatistical analysis that can be used readily from a menu. This enables the user
to progress rapidly in the initial stages of an investigation. It has no programming
language, and so if users want facilities that are not in the menu then they must
leave the program and resort to other tools. Thus, lack of flexibility might prove a
disadvantage, especially when the user has gained expertise in the subject.

Genstat has similarly evolved over time. In its early versions operations were
specified by commands. These could be embodied in programs using the Genstat
language, and this programming environment is still available. The new version of
the program for Windows provides a menu as an alternative, and so users can choose
which mode they prefer, and they can switch from to the other. Genstat is very
general and powerful. It provides facilities for most of the standard statistical anal-
yses, tabulation and high quality graphics, and the latest release includes advanced
techniques based on recent research in statistical computing. It has a large multi-
variate library. Because it can be programmed it is completely flexible, and there is
no need to leave the Genstat environment as demand changes. For geostatistics it is
important because it has the facility for fitting several non-linear variogram models.
This is the most difficult part of geostatistics in general and also the one for which
most software is deficient.

Geostatistics in Genstat

Genstat now embodies a suite of techniques for analysing data distributed in a space
of one or two dimensions geostatistically. It includes commands for computing ex-
perimental variograms and for estimating (predicting) by ordinary kriging, and it
has a special procedure for fitting the common non-linear models to experimental
variograms.

Starting with a set of data the three operations proceed in sequence, as follows.

(1) Estimate semivariances at discrete lags to form an ordered set; the sample or



experimental variogram.
(2) Fit plausible models from those allowed to the experimental variogram.
(3) Krige.

These are called by three directives, which are described in Appendix 1. In many
applications the purpose of kriging is to make a map. Values are then kriged at
the nodes of a fine grid, through which isarithms, ‘contours’, can then be threaded.
Kriging is implemented in Genstat with this in view.

Since this report was compiled it was suggested that the version of Genstat for
workstations should be used because of the need to analyse large data sets of remotely
sensed data. This version works with the command language. The directives for
geostatistics remain the same (see Appendix 1).



PART II: KRIGING AND COKRIGING OF CLIMATE DATA

Data and method

Paul Krause (TEC) provided us with data from 177 weather recording stations in
the eastern USA for geostatistical analysis. The full set of data was divided into two
subsets; one consisting of 121 sites, the other of 56 sites that constituted a validation
set at which estimates from the first could be compared with recorded values. The
variables in the data were height, potential evaporation, continentality, mrange and
temperature. We computed auto and cross variograms for these properties. The auto
variograms were then modelled using Ross’s MLP (Maximum Likelihood Program)
(Ross, 1987). This was while Margaret Oliver was at TEC in February 1996. Using
these variograms and both the full and test sets of data the values of each property
were estimated by ordinary autokriging at more than 5000 sites. Both sets of esti-
mates for temperature were then used for mapping. The autokriged estimates for the
test data matched those of the full set well.

Table 1 summarizes the data. Among other things it shows that height was
strongly skewed, and that taking square roots of height made the distribution more
nearly symmetric and would thereby stabilize variances in later analyses. The corre-
lations between the variables (Table 2) were weak to moderate. Of particlar interest
were the correlations between height and the climatic variables (column 2, Table 2).

That for height and mrange was the strongest, whereas that between height and
temperature was the weakest.

The coregionalizations of height and of the other variables separately were anal-
ysed by computing experimental auto and cross variograms and then modelling them
(Wackernagel, 1994). The cross variance between two random variables u and v
obeying the Intrinsic Hypothesis is defined by

Jus(h) = SEHZ) = Zux+ WHAR) ~ Z(x + D)} (1)

where Z,(x), Z,(x), Z.(x +h), and Z,(x + h) are the values of the two variables at
any two places x and x 4+ h separated by the vector h. As a function of h ~,,(h)
is the cross variogram. Values of v,,(h) can be estimated from data by calculating
experimental or sample cross variances using the usual computing formula:

() = g S0 - abt DHAG) 2o+ B}, ()

where now z,(x;), z,(X;), z(Xi + h), and z,(x; + h) are measured values of the two
variables at sampling points x; and x; +h, of which there are m pairs separated by h.
Changing h gives an ordered set of cross variances, the experimental cross variogram.



Table 1: Summary statistics for climatic data.

Square  Potential
root -evapo- Contin- Temp-
Height height transpiration entality Mrange erature

Minimum 3 1.7 19.2 9.3 42 23.0
Maximum 3945 62.8 197.3 59.3 106 76.7
Mean 676 22.0 8§2.9 40.1 84.7 48.9
Median 500 22.3 83.8 41.1 86 46.2
St. deviation 167 13.9 31.2 9.19 11.0 13.3
Variance 588 450 1944 973.5 84.34 120.5 178.5
Skew 2.0 0.57 0.84 -0.70 -0.91 0.28

To complete the coregionalization the variograms for all combinations of u and v
are computed. When u = v one obtains the usual auto variogram. So the coregion-
alization for two variables, as here, involves computing two autovariograms, one for
each of u and v, and one cross variogram.

Modelling the coregionalization involves fitting an authorized model to the whole
set of experimental variograms. As for a single variable, the model must be such as
to ensure that any weighted combination of values of the variables has a non-negative
variance. The same set of authorized functions is available to choose from. There is
an additional constraint, however, explained below.

We suppose that the three variograms, the two auto variograms and the cross vari-

ogram, are linear combinations of K basic variogram functions, ¢*(h), k = 1,2,..., K:
LN
k=1

where bf is the coefficient of the basic variogram g¥(h) in the model. This is the linear
model of coregionalization. In the bivariate case, which is all we are concerned with
here, the linear model is valid if the g*(h) are all legitimate functions for variograms
and the coefficients b, satisfy the conditions:

b >0, bE >0,

uu —



Table 2: Correlation matrix in lower triangle.

Square root height 1

Potential evapotranspiration —0.354 1

Continentality 0.607 -0.158 1

Mrange 0.703 -0.248 0.770 1
Temperature -0.440 -0.272 -0.776 -0.495 1

and

lbus| = 1bh,] < y/BELBE, -

This latter condition is Schwarz’s inequality.

Goulard & Voltz (1992) devised an algorithm for fitting linear models with these
constraints, and it the one we used for this research. After inspecting the forms of the
variograms and judging the distance parameters we fitted the most plausible models
and thereby obtained values for the linear parameters. In the event we found that
in all cases we could model the experimental variograms by combinations of nugget
plus isotropic power functions. The general equation is

v(h) = b+ bk, (4)

where b, is the nugget variance, by is the coeflicient of the power term, and « is the
exponent, which varied from case to case. Table 3 lists the parameters and their
values.

Having obtained a valid model for the coregionalization we proceded to cokrige.
Cokriging is the logical extension of univariate or autokriging to situations where two
or more variables are spatially interdependent. As in autokriging, page 11, the aim
is to estimate values of a variable, Z(x), at a set of points or in one or more blocks,
which we shall denote by xo for generality, from data on Z plus the related data on
the other variable(s).

Using the same notation as above we suppose that we wish to predict values of
variable u, or in full Z,(x), and we suppose that this variable is less densely sampled
than the other, v. In ordinary cokriging we form the linear sum

]

Zaxo) = Y hax), (3)

=1 =1
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where the subscript [ refers to the variables, and the subscript ¢ refers to the sites, of
which there are n; where the variable [ has been measured. We want the estimate to
be unbiased, and so the weights A; sum as follows:

ny 7y

=1, l=u; and Z,\”—_—o, l#u.

=1 i=1
In words, the weights for the target variable u sum to 1, and those for v sum to zero.
Then for v = 1,2 and for all j =1 to n, we form the equations

2 mn

SN A (%o X) + ¥ = Yuw(X5,Xo) - (6)

=1 i=1

The quantity 4i,(x;, X;) is the cross semivariance between variables [ and v at sites ¢
and j, separated by the vector X; — X, 7uu(X;, Xo) is the average (cross) semivariance
between a site j and the point Xo, and v, is the Lagrange multiplier for the vth
variable. The full cokriging system is thus

2
S A% %) 1y = yw(X,%) Yo=1,2 Vji=1,2,...,n,
=1 1:=1

She = 0

=1

Shi = 0 Vigu. (7)
j=1

It is solved to obtain the weights, which are inserted into Equation (5) to estimate
ZU(XO).

Using the models of Table 3 and the coordinates in the data we set up the kriging
systems above for punctual cokriging with the square root of topographic height as
the subsidiary variable, v above, and the other four variables, potential evaporation,
continentality, mrange and temperature, as the target variables, u, in turn. In each
case we predicted u at the 56 validation sites in three ways. These were:

(1) autokriging from the 121 sites of the first set of data,;
(2) cokriging from the 121 sites;

(3) cokriging from the test variable and height at the 121 sites plus height at the 56
validation sites. ‘

4) In addition, because we knew the height at all the sites of the validation set, we
could use simple regression to predict the target variables, and we did this also.

For each method and for each point we computed the error as the difference between
the estimate and the recorded value, the squared error and the kriging variance. We

6



then computed their averages and the ratio of the mean squared error to the kriging
variance.

Results

The individual estimates at the 56 validation sites and their variances are given in
Tables 1 to 4 in Appendix 2 together with the measured values there. The summaries
of these results are tabulated in Table 4.

Table 4 shows that the bias, as represented by the mean error, is negligible. The
kriging variance diminishes consistently as more information is included, as it should.
Autokriging incurs the largest kriging variances, and cokriging with height known at
the validation points incurs the least. The mean squared errors, however, are least
for the autokriging. This suggests that the linear model of coregionalization does
not describe the data well. One might expect this when the correlations between
the properties are only moderate, as is the case for these data. The Table also
shows that simple regression is a relatively poor predictor. This is partly because
the correlations are moderate and partly because it takes no account of the spatial
dependence in the data. Simple regression is not a satisfactory means of prediction
in these circumstances.

Paul Krause has all of the mapping files of the autokriged and cokriged estimates
for the properties examined. We could not prepare these maps as we did not have
the outline of the relevant part of the USA. We should like to include these maps at
some stage.



Table 3: Cross variogram models for the climatic data with the target variable first.

PE x height

Continentality
x height

Mrange
X height

Temperature

x height

exponent 1.2
Nugget variance

Gradient

Potential transpiration
Square root height

Potential transpiration
Square root height

exponent 1.4
Nugget variance

Gradient

Continentality
Square root height

Potential transpiration
Square root height

exponent 1.0
Nugget variance

Gradient

Mrange
Square root height

Potential transpiration
Square root height

exponent 1.2
Nugget variance

Gradient

Temperature
Square root height

Temperature
Square root height

10.85
25.52

31.14
-7.33

5.86
-6.96

2.38
2.49

12.58
2.82

8.26
7.97

0.60
5.30

9.40
-5.25

60.03

5.72

51.00

3.44

39.36

10.28

46.85

5.80




Table 4: Summaries of kriging errors. Cokriging (121) means cokriging the target
variable with data from only the 121 test sites; cokriging (121456) means cokriging
it with data from the 121 test sites plus height at the target points.

Mean Mean squared kriging Variance

error error variance ratio

Height x PE

Autokriging -0.03 45.0 54.2 0.83

Cokriging (121) -0.32 52.4 50.7 1.03

Cokriging (121456) -0.27 46.3 44.7 1.04

Regression -1.92 804.0 887.3 0.91
Height x Continentality

Autokriging 0.08 2.35 10.4 0.23

Cokriging (121) 0.21 2.96 9.97 0.30

Cokriging (121+56) 0.19 2.53 9.65 0.26

Regression 1.24 51.55 55.07 0.94
Height x Mrange

Autokriging 0.18 25.31 27.13 0.93

Cokriging (121) 0.25 25.15 26.88 0.94

Cokriging (121456) 0.24 26.21 22.57 1.16

Regression 0.91 69.35 58.09 1.19
Height x Temperature

Autokriging -0.16 2.35 12.50 0.19

Cokriging (121) -0.25 2.55 12.27 0.21

Cokriging (121+56) -0.25 2.75 11.94 0.23

Regression -0.72 145.7 299.4 0.49




PART III: KRIGING, OPTIMAL SAMPLING AND KRIGING ANALYSIS

For this part of the analysis we return to the SPOT image of Fort Benning, Columbus,
Georgia, recorded in November 1994. The pixels of the image have a resolution on
the ground of about 20 m X 20 m. There are three wave bands: Green, Red and
Near Infra Red (NIR). The variogram analysis of these wavebands is decribed in the
final report of the first phase of the contract (N68171-95-C-9007).

In this part of the project we explored kriging using the SPOT imagery for the part
of Fort Benning being studied. First we describe kriging and how it has been used to
show the likely estimation variances for different sampling intensities in relation to
the three wavebands. The kriging equations enable sampling schemes to be designed
when the variogram is known and before collecting any data. The pixel values for
channels 2 (Red, R), 3 (Infra-red, I) and for the normalized difference vegetation
index, NDVI = (I - R)/(I + R), were also kriged to obtain a choropleth map. The
aim of kriging pixel data is twofold: to remove some of the noise from the image and
to remap the information based on isarithms chosen to match the likely reflectance of
the vegetation. A more effective way of removing noise than by ordinary kriging is to
filter the pixel information by a kriging analysis. In the previous project we detected
two marked scales of spatial variation in the image from the variogram analysis.
The variogram showed that there was a short-range variation of about 9 pixels long
(180 m) and a much longer one of about 150 pixels (3 km). We filtered the image
according to these spatial scales by kriging the short and the long spatial components
independently.

The theory of kriging and its relation to optimal sampling is described (Journel &
Huijbregts, 1978; Burgess & Webster, 1980; Webster & Oliver, 1990), and the theory
of the kriging analysis to filter data is also given (Goovaerts & Webster, 1994).

Theory
We assume a simple model of a spatially correlated random variable:
Z(x) = p+e(x), (8)

where 1 is the mean of the process, and (x) is another random variable with a mean
of zero and variogram ~(h), where h is the lag.

We also assume the intrinsic hypothesis, namely that the expected differences
between the values at x and x + h is 0 and their variance depends only on h. In
those circumstances y(h) is also the variogram of Z(x).

Characteristics of kriging

At its simplest kriging is a method of local weighted moving averaging of the observed
values within a neighbourhood V. Weights are allocated to the sample data within

10



the neighbourhood of the point or block to be estimated. The weights depend on
the structure of the variation of the Z(x), defined by the variogram model, and the
configuration of the sampling sites. The weights are allocated so as to minimize the
estimation variance, or kriging variance, and the estimates are unbiased. Hence, in
this sense, kriging is an optimal estimator. Kriging is also an exact interpolator in
the sense that the kriged value at a sampling site is the observed value there, and
the estimation variance is zero. Kriging can be done at points or over areas (blocks).
In the analysis that we report here we regarded each pixel in the image from Fort
Benning as a point and used punctual kriging.

In the usual situation a kriged estimate, Z(xo), is a weighted average of data,
z2(X1), 2(X2), . - ., 2(Xn):

Zixa) = Yo halxi), (9)

where A; are the weights.
To ensure that the estimates are unbiased the weights are made to sum to 1:

n

ZA{Z(XL') = 1.

i=1

We also want to minimize the estimation variance, which is given by

var[?(xo)] = E[{Z(Xo) — Z(x%0)}?]
= 2 Z /\i'y(xi,xo) - z Z )\i)\ﬂ(xi, Xj) , (10)

where y(x;,X;) is the semivariance of Z between points x; and x;, and v(x;,Xo) is the
semivariance between the ¢th datum and the point for which the estimate is required.

In ordinary kriging the mean of the random variable, u, is unknown. The estima-
tion variance of Z(xo) is minimized, subject to the non-bias condition, when

ZAVY(X:”XJ')‘H/)(XO) = ~(xj,Xo) forall j
i=1

i)\i’)’(Xi) = 1. (11)

These are the kriging equations. The quantity 1 (xo) is a Lagrange multiplier, which
is introduced to achieve the minimization. The kriging variance is then obtained from

7 = 3 A xo) () (12

11




Optimal sampling

The estimation variance for kriging depends only on the variogram and the config-
uration of sampling points and not on the measured values. This means that if the
variogram is known then the estimation variances can be determined for any desired
sampling configuration before the sampling is done. Therefore, we should be able to
design a sampling scheme to meet a specified tolerance or precision for a property.
We may or may not have data at this stage. In this case we had the image data, but
for field work or to sample the image for data compression we want to minimize the
ground-based sampling or the number of data retained according to the estimation
variance (the square of the standard error) that we can tolerate.

We had determined the models for the variograms previously. They were all
isotropic double exponential, with equation

v(h) = ¢+ e{l —exp(—h/a1)} + c2{l — exp(—h/as)} , (13)

in which ¢ is the nugget variance, ¢; and ¢, are the sills of the short-range and
long-range components respectively, and «; and a, are the corresponding distance
parameters. The values of the parameters are given in Table 5. Using these models
we formed the punctual kriging system, Equations (11), and solved it to determine the
punctual kriging variances by Equation (12) at the centres of square grid cells of side
2, 3, ..., pixels. These are the largest variances associated with the reconstruction
of the images from sampling at the intervals 2, 3, ..., pixels.

One might wish to discover the minimum number of pixels to retain and still
maintain a sufficiently small error, an acceptable tolerance. For this we plotted the
estimation variances against grid spacing for the three wavebands, Figure 1, from
which the sample spacing can be read for any specific tolerance.

We do not know what error is tolerable in this instance. Nevertheless, from the
graphs it is clear how the estimation variance increases rapidly with increased sample
spacing, or equivalenty a smaller sample. For data compression, which we deal with
in Part IV of this report, the graphs illustrate at the outset the kind of estimation
variances or standard errors that we shall incur by removing information.

Results of optimal sampling analysis
Channel 1

The graph of the estimation variances plotted against grid spacing in numbers of
pixels for channel 1 has a very steep initial slope. This results from the short-range
component of the variogram. The pixel map of channel 1 shows that the short range
variation is dominant. If a variance of 50 is chosen for the tolerance, which is 62.5%
of the upper limit of the variance in this graph, then a sampling interval of 9 pixels
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would be needed. Hence, estimates based on this sampling interval would have a
considerable error even though the sampling interval or reduction in data would be
fairly small. For the vegetation survey in the previous project we recommended a
minimum sampling interval of 150 m (7.5 pixels) which would give an estimation vari-
ance of about 38, about 50% of the total variance. With a sampling interval of more
than 60 pixels (1500 m) for channel 1, which was the maximum sampling interval,
we recommended for sampling the long-range component there would be little spatial
dependence in the data. This graph confirms our earlier recommendations. It also
shows the importance of an objective approach to sampling for interpolation or data
reduction.

Channel 2

The initial slope of this graph is also steep. At larger dsitances it becomes more
gradual. The variances this time are for the data transformed to logarithms. The
short- and long-range components are both important for this waveband. The pixel
map of this channel appears less noisy than that of channel 1. For a spacing of 7.5
pixels the estimation variance would be 30%, and for one of 45 pixels 60%.

Channel 3

This graph has the gentlest slope, although it is still steep near to the origin because
of the short-range component of the variation. A sampling interval of 7.5 pixels would
result in an estimation variance of 30% of the total, whereas for a 50-pixel sampling
interval it would be 60% for the long-range component.

Channels 2 and 3 (Red and Near Infra Red) are the ones we expect to be most
closely related to the vegetation. They are also similar to each other and express a
similar degree of variation.

Summary

Figure 1 shows the maximum estimation variances that would result when recon-
structing images from sampling the image for data reduction. Clearly it depends
on the variation in the data. These graphs also show the effect of the two scales of
variation on the sampling interval needed to resolve the variation present.
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Table 5: Variogram model parameters for the three channels and NDVI

Co (&} Co ay an
Channel variance variance variance pixels pixels
1 —rows 0 35.74 43.95 2.83 28.61
— columns 0.88 44.92 45.92 3.76  61.67
- average 0 40.84 42.71 3.26  38.87
2 —rows 0 0.0213  0.0904  2.19 44.67
— columns 0 0.0329  0.0854  4.49 79.00
— average 0 0.0262  0.0845 3.23 53.36
3 —rows 0 0.0105  0.0467 1.76 5291
- columns 0 0.0130 0.0335  3.03 52.47
— average 0 0.0115 0.0400 233 51.92
NDVI
— IOWS 0 0.00406 0.00942 4.51 70.45
— columns 0 0.00422 0.00569 5.24 38.85
0 0.00428 0.00725 5.06 55.80

— average

NB: The distance parameters of the double exponential models fitted to the
variograms can be multiplied by 3 to obtain the approximate ranges of spatial
dependence.
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Figure 1: Graphs of estimation variance against sampling interval for Channel 1
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Kriging

For this part of the project we examined the best way of smoothing or removing
noise from the pixel information for mapping. The simplest approach was to use
ordinary kriging for the digitial numbers (DNs) of channels 2 and 3 and for NDVI
(the normalized difference vegetation index). We used the double exponential models
of the raw data for each of these variables and kriged the raw data on a grid that was
offset by 0.5 of a pixel in both the north-south and east-west dimensions; this was
to avoid estimating at the data points, which would have been pointless. We used
the raw data rather than the transformed values so that TEC can make comparisons
between the isarithmic intervals and the DNs for the classes of vegetation. We kriged
at intervals of both 1 and 2 pixels. We drew only the maps of the latter estimates
because there was little benefit in using the more detailed estimates.

Results of ordinary kriging

For channels 2 and 3 (R and I, respectively), Figures 2 and 3, the isarithmic intervals
were chosen to correspond with the average reflectance for the different classes of
vegetation suggested by TEC. This was more straightforward for channel 2 because
the spectral values seemed to match those of the vegetation closely. This waveband
also had the largest correlation with the vegetation values when they were compared
in the previous project. The reflectance values associated with the ground cover
classes for Channel 2 are given in Table 6.

The general appearance of the maps for Channels 2 and 3 is similar, especially for
the large reflectance values over the open spaces and roads. The major differences
in the pattern are in the south west. Here there appear to be differences in the
short-range variation picked up by the different sensors. In both cases the swampy
areas associated with the Ochillee Creek show up clearly with the blue shading. Also
King’s Pond is clearly visible on both maps (Figures 2 and 3).

The map for NDVI (Figure 4) is somewhat different from the others: the areas
of large reflectance (small NDVI) are more clearly defined. It appears to contain
more detail of the variation. The map is more similar to that of Channel 3 than
that of Channel 2, suggesting that NDVI reflects the pattern in the Infra-red rather
more than that in the red. This is more apparent in the southern part of the region,
Figures 2 to 4. For Channel 3 and NDVI the western and eastern halves of the map
appear very different. The difference seems to be physiographic, with the boundary
following approximately the western edge of the Branch valley.

In all of the kriged maps the short- and long-range components of the variation are
clearly visible. These maps need to be validated now against the field data that were
collected in the Autumn of 1995 by TEC. We did not have these data for comparison.
It now remains for the team at TEC to compare the kriged maps with the ones of
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Table 6: Average reflectance values associated with ground cover class for channel 2

Ground cover class Reflectance Value
Water 24.0
Pine/Hardwood Wet 25.0
Hardwood/Pine and hardwood 25.9
Brush 26.1
Pine/Hardwood 26.3
Hardwood Wet 26.5
Pine/Plantation 27.0
Longleaf Pine 28.0
Oak/Pine 28.5
Open space 30.0

the classification of ground cover to see which is better for predicting ground cover.
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Ordmary Kriged Output for Channel 2
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2: Map of ordinary kriged estimates for the Fort Benning study area: Channel
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Figure 3: Map of ordinary kriged estimates for the Fort Benning study area: Channel
3.
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Ordinary Kriged Output for NDVI
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Figure 4: Map of ordinary kriged estimates for the Fort Benning study area: NDVI.
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Kriging analysis

The variogram may be just one simple structure, or it may be the sum of two or more
structures, one nested inside the other, and each with its own scale, thus

v(h) = ~'(h)+~*(h)... (14)

where the superscripts refer to the separate structures. This matches the real world
in which factors such as relief, geology, tree-throw, fauna, and man’s divisions into
fields and farms operate on their own characteristic spatial scales.

If we assume that the processes are uncorrelated then we can represent Equa-
tion (14) by the sum of K basic variograms:

K
y(h) = > bt (h), (15)

k=1
where g*(h) is the kth basic variogram function and &* is a coefficient that measures

the relative contribution of g*(h) to the sum. This then is our linear model of
regionalization.

Identifying the spatial structures.

When we know that there are nested structures present we can attempt to iden-
tify them separately. We first computed the experimental variograms from the raw
data for this analysis using the usual estimator. We fitted a nested model with two
exponential functions, Equation (13), but without the nugget.

Kriging analysis: theory.

Once distinct spatial structures have been identified in the variogram we can try to
separate their sources. This is effectively filtering. It enables us to isolate specifically
local or regional sources of variation and, thereby, interpret them more easily than
when they are combined. For complex imagery separating out the different sources
of variation helps to show the spatial structure present at the different scales, and it
reduces the noise (Bourgault & Marcotte, 1993; Goovaerts & Webster, 1994; Wen &
Sinding-Larsen, 1997). It is done by what Matheron (1982) called ‘kriging analysis’,
and it is based on the decomposition of Z(x) into the sum of K separate orthogonal
random functions Z*(x),k = 1,2,...,K, each with its basic variogram ¢*(h) of
Equation (15):

K
260 = 3 25) +4 (16)
such that
E[Zk(x)] =0
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and

SEHZH0) — 2+ MHZY () - 2 (x4t )} = () i k=
= 0 otherwise. (17)

Relation (17) expresses the mutual independence of the K random functions
Z*(x). With this assumption, the nested model (15) is easily retrieved from rela-
tion (16). We assume that Z(x) is second-order stationary, which accords with the
results above (the variogram models have asymptotes). The Z¥(x) are the spatial
components, and they represent the behaviour of Z(x) at the spatial scales defined
by the distance parameters of the basic variogram functions, g¥(h). In practice each
spatial component is estimated as a linear combination of the observations z(x;):

n

Zk(xo) = Z)\fz(xi), (18)

=1
where n is the number of observations, z(x;),? = 1,2,...,n, used for the estimation,

and the A\¥ are the weights assigned to the observations.

The n weights are chosen to ensure that the estimate is unbiased and that the
estimation variance is minimal. This leads to the kriging system:

Moa(xi,x)) =1 = bgF(xi,%0) for all 1=1,2,...,n,
7 J
j=1

}njAf = 0. (19)

This system is is solved to find the weights, A¥, to insert into Equation (18). The
quantity ¢ is a Langrange multiplier. From Equation (16), E[Z*(x)] = 0, and so
the weights sum to 0 to assure unbiasedness, not to 1 as in the ordinary kriging
formulation, system (11).

To account for local non-stationarity the kriging is usually done in fairly small
moving neighbourhoods centred on xo. Then it is necessary only that Z(x) is locally
stationary, or quasi-stationary, so that Equation (16) can be rewritten as

26 = 256+ 4 (20)

where p(x) is a local mean which can be considered as a long-range spatial component.

Estimation of the long-range component, i.e. the local mean p(x) and the spatial
component with the largest range, can be affected by the size of the moving neigh-
bourhood (Galli et al., 1984). To estimate a spatial component with a given range,
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the diameter of the neighbourhood should be at least equal to that of the range. It
frequently happens when the sampling density and the range are large that there
are so many data within the chosen neighbourhood that only a small proportion of
them is retained. Although modern computers can handle many data at a time,
the number of data used must be limited to avoid instabilities when inverting very
large covariance matrices. Further, even if all the data could be retained, only the
nearest ones contribute to the estimate because they screen the more distant data.
Consequently, the neighbourhood actually used is smaller than the neighbourhood
specified, which means that the range of the estimated spatial component is smaller
than the range apparent from the structural analysis. Galli et al. (1984) recognized
this, and where data lie on a regular grid they proposed using only every second or
every fourth point to cover a large enough area but still with sufficient data. Such
selection is somewhat arbitrary, and we have adopted an alternative proposed by Ja-
quet (1989) which involves adding to the long-range spatial component the estimate
of the local mean.

Results of the kriging analysis: filtering
Short range

For Channel 2 (R), Figure 5, the intricate local variation associated with erosion in
the area of McKenna Hill shows clearly. This area reflects much of the light because
it has been cleared of vegetation. The roads are also distinct, as is other land that
has been cleared. The short-range variation in the vegetation is also evident. There
appear to be two main classes of reflectance, but this depends to some extent on the
class intervals chosen. Essentially this map shows the main local changes and where
these can be expected from one ground cover class to another. It is not possible to
say what the type of cover is from this map at present.

The map, Figure 6, for Channel 3 (I) shows more detail in the short-range vari-
ation. However, McKenna Hill does not stand out as clearly. There are now three
main reflectance groups in the vegetation. Further field work would be needed to
gain insight into their precise meaning. What is apparent is that the swamp in the

central part of the image is not evident at this scale, but the local variation within it
is.

The short-range map for NDVI, Figure 7, looks like a mixture of the maps for R
and 1. However, there is more detail in the vegetated areas.

Long range

The long-range structures in the three maps, Figures 8 to 10, are clear. Kriging with
the long-range filter evidently removes the local noise and shows the extent of the
major ground cover classes. These maps differ from one another in the finer detail,
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but McKenna Hill and the roads stand out in all. Channels 2 and 3 both pick out the
wet areas in the central part of the maps. The yellow areas on Figure 10 for NDVI
represent the wet areas, but they appear to be more extensive than in the other two
maps.

Summary

There is considerable detail evident on the maps of the long-range component, and
from the point of view of environmental management at the broad scale these maps
should eanble a manager to identify areas for monitoring or more detailed study. The
short-range maps could be of military value in that they show the amount of change
in ground cover to be expected at the local scale. The difference in these scales is
an order of magnitude. The local scale is around 150 m to 300 m and the long-
range 1.5 km to 3 km. These maps also reflect the kinds of spatial scale of variation
established from the image data in the first project and in the vegetation classes from
the transects. Final interpretation of these results will depend on further information
from TEC about ground cover.
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Figure 5: Map of short range kriged estimates after filtering for the Fort Benning
study area: Channel 2.
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Figure 8: Map of long range kriged estimates after filtering for the Fort Benning
study area: Channel 2.
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PART IV: DATA COMPRESSION ANALYSIS

For this part of the project we chose a part of the Fort Benning image that we
had been working on. It is in the eastern part of the area: the bottom left corner is
at 300 350 and the top right corner at 400 450. We have called it ‘Benncut’. It is
square with a side of 100 pixels. Since we wanted to compare several sets of results we
decided to work with the red channel (2) only. Figure 11 shows the pixel map for this
channel. We first computed the experimental variogram over all directions—this was
feasible because we had reduced the number of data points sufficiently to 10 000. We
then fitted a model by the usual least squares approximation. The model that fitted
best was the nested spherical function. The model parameters are given in Table 7.
The short-range scale of variation is similar to that for the whole region. The long-
range structure is shorter than that in the region as a whole: it is 24 pixels (480 m)
compared with approximately 3 km for the whole area. This suggests that there are
more scales of variation nested within the image than were apparent from the initial
analysis. This raises some interesting ideas on the relations between different spatial
scales for different sizes of area. This is something that we hope to pursue in future.

For each kriging and simulation (see below) we divided the 10 000 points in
Benncut into two groups. One contained the data from which to krige and which
would serve as conditioning data for simulation. The other contained the remainder
of the pixels at which we should krige or simulate to reconstruct the image and the
values that we should use to validate the result. We reduced the number of data
points in the first of the files in stages as shown in Table 8.

Table 7: Parameters of the double spherical variogram model for Benncut

Variance Distance/pixels
Channel Co a ca ay as
2 —raw 0.3107 1.3501 0.9566 6.898  24.45

— scores 0.1711 0.3862 0.4561 7.005 21.30
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Table 8;: The order of data reduction.

Order of Number of Percentage Number of
reduction conditioning data  retained  validation data
1in2x 2 2500 25 7500
1in3 x3 1122 11.22 8878
1in4 x4 625 6.25 9375
lind x5 400 4 9600
1in6 x 6 272 2.72 9728
1in7x7 210 2.1 9790
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Figure 11: Pixel maps of digital numbers for channel 2 for Benncut
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Methods of Reconstructing Information

Ordinary kriging.  This is the method of estimation embodied in geostatistics that is
described in Part III. The selected data were used in conjunction with the variogram
model in Table 7 to estimate the DN values of the red channel. This was done for each
of the seven files in Table 8, and the resulting estimates were mapped, Figures 12,
14, 16, 18, 20, and 22.

Sequential Gaussian Simulation. This is a method of stochastic simulation that
adheres to the theory of regionalized variables. The basic aims of simulation are to
generate ‘data’ with the same spatial structure as those from which the real data are
thought to arise. The results may be conditioned by existing data so that they never
depart grossly from the actual situation. The values at data points are retained, so
that the simulated surface passes through them. Simulation is different from kriging,
and incidentally from most other forms of interpolation in that it attempts to retain
the spatial structure, whereas kriging smoothes as it attempts to find the best local
estimate of Z(x) at each unsampled location by minimizing the estimation variance.
Kriging thus loses variance. In simulation the global features that result, such as
the overall texture of the variation, and the statistics of the simulated values take
precedence over the accuracy of the local estimates.

Stochastic simulation may still make use of the kriging equations. There are
several methods; the one that we used for this analysis was sequential gaussian con-
* ditional simulation. In it the conditioning data for estimation include not only the
original data but also all of the values that have been simulated previously within the
given search neighbourhood. For this analysis we modified the programs in GSLIB
(Deutsch & Journel, 1992)

The simulated values were conditioned on the data in the selected files in Table 8.
In conditional gaussian simulation the conditional cumulative distribution function
(ccdf) is assumed to be Gaussian and the means and variances are given by a series
of simple kriging systems. The data were transformed first to a standard normal
distribution using a normal scores transform. The variogram was then computed
from the transformed values of the entire set of values of the subset, and modelled.
The model was a nested spherical one with similar ranges to that computed from the
untransformed data.

The variable was simulated at the unknown points sequentially using simple krig-
ing where the mean is assumed to be known. Since the data were normal scores
we could assume that the mean was zero. The conditioning data were the original
data and the simulated data for the given neighbourhood. At each node a specific
number of neighbouring conditioning data including any previously simulated val-
ues were used with the variogram model and simple kriging to estimate the mean
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and variance of the ccdf there. The simulated value was then determined from that
ccdf. The new simulated value was then added to the data set for the next estimate
to be computed. This was repeated at each node of the grid. At those with the
original data the procedure returned the original value. Finally the simulated values

were back-transformed to the original values, the resulting estimates were mapped,
Figures 13, 15, 17, 19, 21, and 23.

Results

Figures 12 to 23 show the maps of the reconstructed image data for Benncut. We
started by reducing the data to 25 %. It is clear in Figure 12 where the data were
reconstructed by kriging that there has been some smoothing of the variation. The
road in the south west of the image, a dark linear structure in Figure 11, is no longer
as clear in Figure 12. For the conditional simulation, Figure 13, there has been less
smoothing, and the overall variation has been preserved. Visually this map appears to
represent the image more precisely. The road in the south west of the image has been
retained more effectively than by kriging. The estimates at the unsampled points were
compared with the original values at these points: Table 9 gives the mean differences
and mean squared difference between the original values and the estimated values by
kriging and simulation. For both methods the mean difference is small, showing that
there is little bias in the results. The mean squared difference is smaller for kriging
than for simulation, showing that the kriged estimates are closer to the true values.
This first stage of data reduction shows clearly the different underlying aims of the
methods: kriging obtains the best local estimates, whereas simulation preserves the
variability and the statistical parameters of the distribution. The mean of the original
DNs for the red channel of Benncut is 26.2, and the variance is 2.6065. Table 9 shows
that the variance for the kriged estimates is less than the original variance and that
for the simulated values.
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Table 9: Summaries of kriging (K) and simulation (S) errors for Benncut.

Sampling Mean difference  Mean squared Mean of estimates Mean Variance
interval difference of estimates

K S K S K S K S

1in2x2 -0.0330 0.0003 0.6908 1.8838 26.196 26.226  1.7957 2.6425
lin3x3 -0.0222 -0.0085 1.0116 2.2883 26.195 26.218 1.5115 2.4156
lin4 x4 0.0592 0.0589 1.1104 3.0634 26.276 26.281 1.5336 2.8254
1lind x5 -0.0142 0.0056 1.5265 3.1271 26.211  26.231  1.3469 2.5920
1in6 x 6 -0.0199 -0.0064 1.6837 3.6283 26.210 26.216  0.9253 2.5700
1in7x 7 -0.1464 -0.0942 1.8512 4.2432 26.083  26.131  0.0503 3.1130
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Figures 14 and 15 show the results for the 1 in 3 x 3 sample. In both cases the
general forms of the main structures have been retained, but the effect of smoothing by
kriging (Figure 14) is now more evident. The mean squared difference for simulation
has increased more than that for kriging. For the 1 in 4 X 4 sampling the results
of kriging, Figure 16, shows that the main structures are still evident, but the road
in the south western part of the area is not. This structure can still be seen in the
simulated map, Figure 17. In general the latter appears to be more similar to the
original map than the kriged one. Figure 18 for kriging from the 1in 5 x 5 sample
shows that the major structures have been retained reasonably well, but that the fine
detail has been lost. The map of the simulated values for this data set, Figure 19,
shows that the variability in the original image has been retained as well as the form
of the larger structures. Figure 20, kriging of 1 in 6 x 6 data, shows again that
kriging has retained the main large scale structures in the centre of the field, but that
the edges are now becoming less precise. The map of the simulated values, Figure 21
is more like the original map than the kriged one. Even for Figures 22 and 23, 1 in
T x 7 data, there is reasonable reproduction of the general form of the large-scale
features. It is unlikely that data would need to be compressed to this extent, but
the results show clearly the capabilities of kriging and geostatistical simulation for
restoring the information once a good spatial model has been derived.

The mean differences between the values for simulation remain small throughout,
but the mean squared differences are slightly larger than for kriging. One factor that
might have made the results of simulation appear less precise than the kriged ones
is the effect of transformation. The back transformation results in some aberrant
values from the tails of the distribution. Nevertheless considering that 75% and more
of the data have been eliminated the results are good for both methods. It also
confirms that there is considerable redundant information in remotely sensed data,
as suggested by Atkinson et al. (1990). The results suggest that once we have a
good variogram model it is possible to reconstruct the image reliably from a small
sample. There is now a need to apply simulated annealing to this test because it does
not depend on transformed values, so that we can explore further the results from
simulation.
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Figure 14: Map of ordinary kriged estimates for Benncut from a sample of 1 in 3 x 3
(11.22 %).
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Figure 15: Map of estimates for Benncut by conditional Gaussian sequential simula-
tion from a sample of 1 in 3 x 3 (11.22 %).
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Figure 21: Map of estimates for Benncut by conditional Gaussian sequential simula-
tion from a sample of 1in 6 X 6 (2.72 %).
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APPENDIX 1 Genstat Directives

The FVARIOGRAM directive

The FVARIOGRAM directive forms an experimental variogram from a set of values
of a variable, Z, distributed in one or two dimensions using the usual computing
formula:
1 m(h) L )
A(h) = —== i) — 2(x; , 21
) = g 2 L) — 2t} (1)

where z(x;) and z(x; + h) are the values at positions x; and x; + h, and m(h) is the
number of paired comparisons contributing to the estimate. For data on a regular grid
or transect h is an integer multiple of the sampling interval. For irregularly scattered
data h is discretized so that for each nominal lag there is a range of distance equal
to the increment (STEP) and an angular range (SEGMENTS) set by the user. The
nominal lag is at the centre of both ranges.

Data (DATA) may be on a regular grid and read as a matrix with coordinates
implied by columns (X) and rows (Y). Alternatively they may be irregularly scattered,
in which case they are read as a variate, and they must have their spatial coordinates
provided as X (eastings) and Y (northings), also in variates.

The experimental variogram is controlled by five options. For irregular data the
maximum distance to which the variogram is calculated is set by XMAX for all direc-
tions. For regular data XMAX defines the maximum lag distance in the X direction,
and additionally YMAX must be given to limit the distance in the Y direction. The
increment in distance is set by STEP. The variogram may be computed in one or
more directions. These are given by DIRECTIONS in degrees counterclockwise from
east in the usual mathematical convention. Each direction is at the centre of an
angular range, which is defined by SEGMENTS.

A variogram can be computed without regard to direction by setting DIREC-
TIONS to 0 and SEGMENTS to 180. This is advisable if variation seems to be
isotropic, i.e. the same in all directions, or if there are too few data to compute
F(h) for two or more directions separately. The lag then becomes a scalar |h| = h
in distance only. Experience suggests that some 300 data are needed to distinguish
anisotropy. ,

Statistics are provided by default, and the user can obtain one or more graphs of
the variogram by setting GRAPH in the PRINT option.

The final output of FVARIOGRAM is a set of variates as follows.

VARIOGRAMS - the ordered set of semivariances.

DISTANCES - the mean lag distances at which the semivariances have been com-
puted.
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DIRECTIONS - the angular separations at which the semivariances have been cal-
culated.

COUNTS - the numbers of paired comparisons from which the semivariances have
been computed.

These are tabulated on output in columns in the order DISTANCES, ANGLES,
VARIOGRAMS, and COUNTS, from which they can be read for the next stage of
analysis, the fitting of models using MVARIOGRAM.

The MVARIOGRAM procedure

The procedure MVARIOGRAM fits one or more models to the experimental vari-
ogram. It uses the Genstat directive FITNONLINEAR. Models must be authorized
in the sense that they cannot give rise to negative variances when data are combined.
Technically they are conditionally negative semi-definite (CNSD); see Webster &
Oliver (1990) or Journel & Huijbregts (1978) for an explanation.

The isotropic models currently available in MVARIOGRAM are:

bounded with finite range - BOUNDEDLINEAR (bounded linear) , CIRCULAR,
SPHERICAL, DOUBLESPHERICAL (double spherical) and PENTASPHER-
ICAL;

bounded asymptotic - EXPONENTIAL, BESSELK1 (Whittle’s elementary corre-
lation; Whittle, 1954), and GAUSSIAN.

unbounded - POWERFUNCTION (power function with exponent strictly between
0 and 2), and LINEAR, which is a special case of the power function with
exponent 1.

In addition the AFFINEPOWER function may be fitted to an experimental variogram
that appears unbounded and geometrically anisotropic, i.e. one that might be made
isotropic by a simple linear transformation of the spatial coordinates.

The procedure takes a table of DISTANCES, ANGLES, VARIOGRAMS, and
COUNTS, as produced by FVARIOGRAM, and it attempts to fit in turn the models
specified by the user by estimating their parameters. It weights the entries in the
experimental variogram, either by the COUNTS, or by a combination of COUNTS
and VARIOGRAM using the setting CBY VAR, or equally using the setting EQUAL.
The model may be fitted with an intercept (a constant, the ‘nugget’ variance, see
below) by setting ESTIMATE, or through the origin with the setting OMIT.

Output from the procedure includes convergence monitoring, an analysis of vari-
ance, and the estimated values of the parameters, distinguishing the non-linear from
the linear.

The procedure contains or calculates from the variogram rough starting values for
the parameters. These are then refined by FITNONLINEAR to convergence. If the
solution does not converge there are two likely reasons.
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1. The model is unsuited for the particular experimental variogram. For example,
a bounded model is specified when the variogram is clearly unbounded, or vice
versa. The user should choose only variograms that have approximately the
right shape.

2. The starting values are too far from a sensible solution. Here the user should
estimate starting values by inspection and insert them into MVARIOGRAM.

The KRIGE directive

The KRIGE directive computes the ordinary kriging estimates of a variable at posi-
tions on a grid from data and a model variogram by solving the kriging system.

The DATA must be in one of the two forms as for FVARIOGRAM, i.e. as a
matrix on a rectangular grid with spatial coordinates implied, or as a variate with
the coordinates in X (eastings) and Y (northings) supplied as additional variates. By
default all data are considered when forming the kriging system. However, a subset
of the data may be selected by limiting the area to a rectangle defined by XOUTER,
the left (western) and right (eastern) limits, and YOUTER, the bottom (southern)
and top (northern) limits.

The positions at which Z is estimated (predicted) are contained in a rectangle
defined by XINNER and YINNER and INTERVAL. XINNER and YINNER are
specified in the same way as XOUTER and YOUTER, and their limits should lie
within those of XOUTER and YOUTER. The option INTERVAL is the distance
between successive positions in the rows and columns of the grid at which kriging
is to be done. INTERVAL is specified in the same units as the data. However, if
the aim is to make a map then INTERVAL should be chosen so that it is no more
than 2 mm on the final document. By doing this the optimality of kriging will not
be noticeably degraded by the subsequent contouring.

Kriging may be either punctual, i.e. at ‘points’ which have the same size and
shape as the sample support, or on bigger rectangular blocks. The size of the blocks
is specified by BLOCK, the lengths of the block in the x direction (eastings) and
y direction (northings). Punctual kriging is the default. Alternatively it can be
specified by giving both values as 0. The average semivariances between point and
block, ¥(h) and 4(B, B) in the kriging system, are computed by integrating the
variogram numerically over the block. The number of steps in each direction is given
by NSTEP. The default is 8, and is recommended. The kriging may be accelerated
by reducing NSTEP at the expense of accuracy, and accuracy gained by increasing
it but by taking more time. The minimum is 4 and the maximum 10.

The minimum and maximum number of points for the kriging system, n in kriging
equations, are set by MINPTS and MAXPTS. Their limits are a minimum of 3 for
MINPTS and and maximum of 40 for MAXPTS, and MINPTS must be less than
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or equal to MAXPTS. The defaults are 7 and 20 respectively. Data points may
be selected around the point or block to be kriged by setting a RADIUS within
which they must lie. If the variogram is anisotropic then the SEARCH may also be
ANISOTROPIC. The default is ISOTROPIC.

Further options are available for gridded data. Universal kriging may be invoked
by setting the DRIFT to LINEAR or to QUADRATIC, i.e. of order 1 or 2 respectively.
The default is CONSTANT for ordinary kriging. If the grid is not square then the -
ratio of the spacing in the y direction to that in the x direction is given by YXRATIO.
The default is 1.0 for square. Missing data on the grid may be interpolated by
punctual kriging as a preliminary by setting INTERPOLATE to YES. The default
is NO.

The variogram is specified by its type and parameters, as follows. The MODEL
may be of any of POWER, BOUNDEDLINEAR (one dimension only), CIRCULAR,
SPHERICAL, PENTASPHERICAL, DOUBLESPHERICAL, EXPONENTIAL, GAUS-
SIAN, and BESSELK1 (Whittle’s function). All models may have a NUGGET, which
is the constant from MVARIOGRAM. The POWER function (the only unbounded
model) has a GRADIENT and EXPONENT. The simple bounded models, i.e. all
others except DOUBLESPHERICAL, have SILLVARIANCES (the sill of the cor-
related variance) and RANGES. The latter is strictly the correlation range of the
BOUNDEDLINEAR, CIRCULAR, SPHERICAL AND PENTASPHERICAL mod-
els, and for the asymptotic ones it is the distance parameter of the model. The
DOUBLESPHERICAL model has two SILLVARIANCES and two RANGES corre-
sponding to the two components of the model.

The ISOTROPY may be ISOTROPIC or anisotropic. In the latter case it may be
either BURGESS anisotropy (Burgess & Webster, 1980) or GEOMETRIC anisotropy
(Journel & Huijbregts, 1978; Webster & Oliver, 1990), and the anisotropy must be
specified by three parameters, namely PHI, the angle in radians of the direction
of maximum variation, RMAX, the maximum gradient of the model, and RMIN,
the minimum gradient. In the present release only the POWER function may be
anisotropic.

The output consists of two matrices, one of estimates (predictions) in ESTI-
MATES, and the other of the estimation (prediction or kriging) variances in VARI-
ANCES. The matrices are arranged with the first row of each matrix at the bottom
following geographic rather than mathematical convention, ready for mapping,.

Intermediate results may be printed optionally by settings of PRINT. SEARCH
will list the results of the search for data around each position to be kriged. WEIGHTS
will list the kriging weights at each position. MONITOR will monitor the formation
and inversion of the kriging matrices for each position. These options enable the user
to check that the kriging is working reasonably. They can produce a great deal of
output, and they should not be requested when kriging large matrices, such as might
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be wanted for mapping. The option DATA will print the data.
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APPENDIX 2 Results of Climate Data Analysis

Potential Evapotranspiration

X Y t ESTIMATE VARIANCE | ESTIMATE VARIANCE | ESTIMATE | VARIANCE PE
i Autokriging | 121 points Cokriging | 121 points Cokriging  |121+56 points Original

35337 9'4.37; 6.94E+01 8.04E+01 7.53E+01, 6.78E+01 7.50E+01| 6.44E+01 7.47E+01
34.73. 92.23; 4.97E+01 8.19E+01 8.60E+01] 7.83E+01 8.50E+01 7.62E+01 9.58E+01
41.83; 72.68 2.03E+01 7.42E+01 1.05E+02| 4 43E+01 1.05E+02 3.84E+01 1.21E+02
38.85] 77.03 2.97E+01 7.10E+01 8.59E+01] 2.28E+01 8.13E+01 1.30E+01 7.74E+01
39.67! 75.6! 2.38E+01 7.01E+01 9.46E+01 2.65E+01 9.26E+01 1.77E+01 9.32E+01
30.22! 81.88 9.20E+00 7.14E+01 6.95E+01 2.01E+01 6.90E+01 9.61E+00 7.31E+01
24.58' 81.68 9.80E-01 8.27E+01 5.05E+01 1.67E+01 4.83E+01 3.29E+00 4.75E+01
32.52 84.95 4 54E+01 7.37E+01 8.90E+01 4.40E+01 8.94E+01 3.81E+01 8.53E+01
32,13! 81.2 1.97E+01 7.27E+01 7.73E+01 3.34E+01 7.54E+01 2.56E+01 7.40E+01
41.98! 87.9 7.26E+01 7.49E+01 8.91E+01 4.85E+01 8.91E+01 4.20E+01 8.29E+01
41.53 93.65 9.98E+01 7.81E+01 7.06E+01 6.28E+01 7.07E+01 5.94E+01 6.60E+01
42.08 87.83] - 7.28E+01 7.49E+01 8.89E+01 4.86E+01 8.87E+01 4.21E+01 8.33E+01
41.45 90.5 8.01E+01 7.72E+01 7.87E+01 5.75E+01 7.77E+01 5.31E+01 8.28E+01
40.67 89.68 7.21E+01 7.59E+01 8.08E+01 4.14E+01 8.05E+01 3.46E+01 8.01E+01
41 85.2 7.48E+01 7.30E+01 9.12E+01 4.36E+01 9.16E+01 3.77E+01 9.01E+01
38.03 84.6 8.63E+01 7.42E+01 9.43E+01 4.40E+01 9.52E+01 3.80E+01 1.01E+02
29.98 90.25 7.42E+00 7.45E+01 9.54E+01 2.24E+01 9.35E+01 1.19E+01 9.34E+01
38.28 76.42 1.93E+01 7.18E+01 8.59E+01 3.68E+01 8.33E+01 2.98E+01 8.35E+01
45.07 83.57 6.84E+01 8.43E+01 9.29E+01 7.16E+01 9.34E+01 6.84E+01 7.83E+01
42.97 83.75 7.23E+01 7.57E+01 8.54E+01 4.48E+01 8.52E+01 3.86E+01 7.58E+01
42.77 84.6 7.24E+01 7.44E+01 8.67E+01 4.10E+01 8.73E+01 3.42E+01 7.82E+01
46.83 92.18 1.10E+02 8.99E+01 6.11E+01 8.93E+01 6.15E+01 8.72E+01 7.80E+01
44.88 93.22 1.12E+02 8.28E+01 6.00E+01 6.42E+01 5.85E+01 6.00E+01 5.93E+01
38.82 92.22 8.08E+01 7.92E+01 7.84E+01] 6.49E+01 7.86E+01 6.14E+01 8.54E+01
32.32 90.08 2.50E+01 7.72E+01 9.59E+01 6.04E+01 9.69E+01 5.66E+01 9.88E+01
32.33, 88.75 2.58E+01 7.37E+01 9.96E+01 2.38E+01 1.01E+02 1.38E+01 9.70E+01
35.27] 75.55 2.62E+00 8.53E+01 8.83E+01 8.08E+01 8.71E+01 7.84E+01 1.00E+02
35.22, 80.93 7.40E+01 7.24E+01 8.47E+01 4.22E+01 8.59E+01 3.62E+01 8.01E+01
34.9 76.88 7.28E+00 7.74E+01 8.88E+01 3.77E+01 8.79E+01 2.98E+01 8.96E+01
46.9, 96.8 1.44E+02 9.34E+01 4.81E+01 1.19E+02 4.79E+01 1.19E+02 4,10E+01
42.87! 10055 2.43E+02 8.11E+01 3.63E+01 7.40E+01 3.67E+01 7.14E+01 3.38E+01
39.45 74.57 1.64E+01 7.20E+01 9.81E+01 3.40E+01 9.80E+01 2.63E+01 9.56E+01
4222 75.98 4.37E+01 7.19E+401 9.51E+01 3.44E+01 1.02E+02 2.70E+01 1.02E+02
40.65 73.78 1.90E+01 7.22E+01 1.02E+02 1.88E+01 9.84E+01 7.95E+00 9.49E+01
40.92 81.43 8.21E+01 7.33E+01 9.36E+01 3.19E+01 9.63E+01 2.38E+01 9.31E+01
35.4 97.6 1.36E+02 8.06E+01 5.08E+01 7.25E+01 5.14E+01 6.94E+01 5.41E+01
42.83 80.18 6.96E+01 7.63E+01 9.54E+01 4.49E+01 9.64E+01 3.88E+01 1.06E+02
40.5 80.22 7.74E+01 7.54E+01| ~ 9.49E+01 4.70E+01 9.70E+01 4.16E+01 9.22E+01
35.03 85.2 7.56E+01 7.57E+01 9.91E+01 5.68E+01 9.96E+01 5.25E+01 1.08E+02
35.8 84 9.41E+01 7.52E+01 9.25E+01 5.84E+01 9.32E+01 5.45E+01 9.60E+01
36.12 86.68 6.35E+01 7.74E+01 1.05E+02 5.85E+01 1.06E+02 5.44E+01 9.69E+01
32.42 99.68 1.67E+02 7.95E+01 3.06E+01 6.15E+01 3.18E+01 5.73E+01 3.33E+1
35.23 101.7 2.72E+02 8.55E+01 2.46E+01 7.64E+01 2.64E+01 7.36E+01 2.94E+01
259 97.43 2.65E+01 9.66E+01 4.01E+01 1.16E+02 3.89E+01 1.15E+02 3.14E+01
217 97.28 2.36E+01 7 .53E+01 4.25E+01 2.25E+01 3.92E+01 1.17E+01 3.64E+01
329 97.03 8.45E+01 7.62E+01 5.14E+01 2.02E+01 5.03E+01 8.99E+00 4.92E+01
29.97 95.35 2.06E+01 7.71E+01 6.89E+01 5.43E+01 6.84E+01 4.96E+01 6.95E+01
29.53 08.47 7.49E+01 7.81E+01 3.47E+01 6.12E+01 3.54E+01 5.72E+01 4.00E+01
33.97 98.48 1.47EH02 8.14E+01 4.17E+01 7.95E+01 4.05E+01 7.69E+01 4.21E+01
36.93 76.28 1.14E+01 7.20E+01 8.53E+01 1.54E+01 8.26E+01 3.59E+00 7.10E+01
38.95 77.45 3.69E+01 7.18E+01 8.60E+01 2.85E+01 8.15E+01 1.99E+01 8.90E+01
42.95 87.9 7.47E+01 7.50E+01 8.28E+01 4.69E+01 8.24E+01 4.08E+01 8.04E+01
37.78 81.12 9.39E+01 7.32E+01 8.59E+01 3.58E+01 9.30E+01 2.84E+01 9.64E+01
44.88 63.52 1.82E+01 8.05E+01 1.79E+02 2.43E+01 1.84E+02 1.32E+01 1.88E+02
46.8 71.38 2.54E+01 9.60E+01 1.44E+02; 1.34E+02 1.44E+02i 1.34E+02 1.25E+02
43.9 69.93. 1.78E+01 7.82E+01 1.44E+02! 3.39E+01 1.43E+02! 2.54E+01 1.42E+02
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Continentality

X Y 'ESTIMATE __[VARIANCE {ESTIMATE . |VARIANCE 'ESTIMATE VARIANCE |Continentality |
| Autokriging | 121 points | Cokriging 121 points | Cokriging :121+56 points! Original
35.33; 94.37; 4.33E+01 1.16E+01 4.35E+01 1.12E+011  4.37E+01: 1.10E+01 4.44E+01
34.73 92.23;  3.85E+01 1.25E+01 3.89E+01 1.20E+01 3.90E+01: 1.20E+01 4.24E+01
41.93 72.68 4.21E+01 9.33E+00 4.18E+01 9.07E+00 4.17E+01; 8.71E+00 4.36E+01
38.85 77.03 3.97E+01 8.06E+00 3.89E+01 7.73E+00 3.99E+01! 7.10E+00 3.99E+01
39.67 75.6 4.07E+01 7.98E+00 4.00E+01 7.77E+00 4.08E+01! 7.18E+00 4.05E+01
30.22 81.88 2.64E+01 7.97E+00 2.55E+01 7.61E+00:  2.56E+01; 6.96E+00 2.70E+01
24.58 81.68 1.11E+01 9.69E+00 1.20E+01 8.83E+00 1.15E+01; 8.26E+00 9.30E+00
32.52 84.95 3.57E+01 9.29E+00 3.59E+01 9.00E+00 3.57E+01: 8.66E+00 3.49E+01
32.13 81.2 3.16E+01 8.76E+00 3.04E+01 8.45E+00 3.09E+01! 8.00E+00 3.25E+01
41.98 87.9 4.77E+01 9.67E+00 4.75E+01 9.39E+00 4.76E+01! 8.93E+00 4.83E+01
41.53 93.65 5.38E+01 1.10E+01 5.33E+01 1.06E+01 5.36E+01 1.05E+01 5.35E+01
42.08 87.83 4.75E+01 9.64E+00 4.74E+01 9.36E+00 4.75E+01 8.90E+00 4.71E+01
41.45 90.5 5.12E+01 1.04E+01 5.08E+01 1.01E+01 5.13E+01 9.88E+00 5.12E+01
40.67 89.68 4.98E+01 9.66E+00 4.93E+01 9.23E+00{ - 4.95E+01 8.88E+00 4.95E+01
41 85.2 4.49E+01 9.13E+00 4.50E+01 8.89E+00 4.51E+01 8.54E+00 4.68E+01
38.03 84.6 4.23E+01 9.46E+00 4.20E+01 9.15E+00 4.17E+01 8.83E+00 4.19E+01
29.98 90.25 3.02E+01 8.57E+00 2.95E+01 8.09E+00 3.00E+01 7.52E+00 2.86E+01
38.28 76.42 3.87E+01 8.55E+00 3.76E+01 8.32E+00 3.83E+01 7.87E+00 3.91E+01
45.07 83.57 4.33E+01 1.22E+01 4.31E+01 1.16E+01 4.31E+01 1.16E+01 4.24E+01
42.97 83.75 4.39E+01 9.74E+00 4.36E+01 9.38E+00 4.36E+01 9.02E+00 4.40E+01
42.77 84.6 4.40E+01 9.24E+00 4.39E+01 8.93E+00 4.36E+01; 8.51E+00 4.41E+01
46.83 92.18 5.52E+01 1.38E+01 5.50E+01 1.33E+01 5.52E+01; 1.32E+01 5.14E+01
44.88 93.22 5.58E+01 1.18E+01 5.57E+01 1.13E+01 5.63E+01 1.11E+01 5.76E+01
38.82 92.22)  4.82E+01 1.12E+01 4.83E+01 1.08E+01 4.85E+01 1.07E+01 4.87E+01
32.32 90.08]  3.43E+01 1.07E+01 3.43E+01 1.04E+01 3.41E+01: 1.02E+01 3.79E+01
32.33 88.75 3.55E+01 8.86E+00 3.59E+01 8.37E+00!  3.57E+01: 7.87E+00 3.51E+01
35.27 75.55 3.44E+01 1.32E+01 3.27E+01 1.26E+01 3.33E+01! 1.26E+01 3.12E+01
35.22 80.93 3.66E+01 9.02E+00 3.76E+01 8.79E+00 3.71E+01! 8.42E+00 3.66E+01
34.9 76.88 3.42E+01 9.67E+00 3.31E+01 9.19E+00 3.36E+01! 8.75E+00 3.28E+01
46.9 96.8 5.71E+01 1.63E+01 5.63E+01 1.58E+01] - 5.62E+01 1.58E+01 5.93E+01
42.87 100.55 5.05E+01 1.20E+01 5.14E+01 1.16E+01 5.13E+01 1.16E+01 5.12E+01
39.45 74.57 3.98E+01 8.84E+00 3.89E+01 8.53E+00 3.88E+01 8.10E+00 4.07E+01
42.22 75.98 4.28E+01 8.66E+00 4.38E+01 8.37E+00 4.18E+01 7.91E+00 4.22E+01
40.65 73.78 4.09E+01 8.33E+00 3.99E+01 7.91E+00 4.05E+01 7.34E+00 3.97E+01
40.92 81.43 4.20E+01 8.76E+00 4.25E+01 8.37E+00 4.17E+01 7.89E+00 4.20E+01
354 97.6 4.70E+01 1.18E+01 4.67E+01 1.14E+01 4.66E+01 1.13E+01 4.70E+01
42.83 80.18 4.26E+01 9.67E+00 4.30E+01 9.28E+00 4.25E+01 8.96E+00 3.99E+01
40.5 80.22 4.08E+01 1.00E+01 4.14E+01 9.63E+00 4.13E+01 9.41E+00 4.11E+01
35.03 85.2 3.93E+01 1.03E+01 4.03E+01 1.00E+01 4.01E+01 9.79E+00 3.94E+01
35.8 84 3.83E+01 1.03E+01 3.98E+01 1.00E+01 3.92E+01, 9.82E+00 3.87E+01
36.12 86.68 4.17E+01 1.07E+01 4.14E+01 1.04E+01 4.13E+01] 1.02E+01 4.10E+01
32.42 99.68 4.23E+01 1.10E+01 4.36E+01 1.06E+01 4.31E+01 1.04E+01 4.20E+01
3523 101.7 4.44E+01 1.28E+01 4.68E+01 1.23E+01 4.60E+01 1.23E+01 4.32E+01
25.9 97.43 2.78E+01 1.74E+01 2.66E+01 1.66E+01 2.66E+01 1.65E+01 2.63E+01
277 97.28 3.06E+01 8.34E+00 2.95E+01 8.00E+00 3.02E+01 7.29E+00 2.92E+01
32.9 97.03 4.31E+01 9.10E+00 4.26E+01 8.45E+00 4.31E+01 7.96E+00 4.29E+01
28.97 95.35 3.42E+01 1.03E+01|"  3.30E+01 1.00E+01 3.36E+01 9.80E+00 3.31E+01
29.53 98.47 3.60E+01 1.07E+01 3.61E+01 1.05E+01 3.59E+01 1.03E+01 3.64E+01
33.97 98.48 4.51E+01 1.23E+01 4.54E+01 1.20E+01 4.55E+01 1.18E+01 4.59E+01
36.93 76.28 3.64E+01 7.88E+00 3.52E+01 7.47E+00 3.64E+01 6.77E+00 3.64E+01
38.95 77.45 3.98E+01 8.48E+00 3.89E+01 8.14E+00 4.00E+01; 7.61E+00 4.24E+01
42.95 87.9 4.78E+01 9.42E+00 4.76E+01 9.15E+00 4.76E+01i 8.72E+00 4.64E+01
37.78 81.12 3.83E+01 8.93E+00 3.95E+01 8.59E+00 3.71E+01] 8.17E+00 3.70E+01
44.88 63.52 3.26E+01 9.66E+00 3.31E+01 8.99E+00 3.22E+01; 8.49E+00 3.56E+01
46.8 71.38 4.69E+01 1.82E+01 4.63E+01 1.76E+01 4.59E+01; 1.74E+01 5.03E+01
43.9; 69.93.  4.07E+01 9.95E+00°  4.01E+01"  9.38E+00 4.04E+01 9.02E+00 4.21E+01
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Mrange

X Y ESTIMATE | VARIANCE - ESTIMATE ! VARIANCE ! ESTIMATE VARIANCE Mrange
Autokriging 121 points ' Cokriging 121 points Cokriging  :121456 points | Original

35.33 94.37 8.53E+01 3.12E+01- 8.56E+01 3.09E+01 8.45E+01, 2.50E+01 9.10E+01
34.73 92.23 8.37E+01 3.34E+01: 8.39E+01 3.32E+01 8.25E+01! 2.61E+01 8.70E+01
41.93 72.68 8.55E+01 2.51E+01: 8.52E+01 2.49E401 8.52E+01} 2.15E+01 9.20E+01
38.85 77.03 8.38E+01 2.02E+01:  8.31E+01 2.00E+01 8.09E+01 1.83E+01 8.40E+01
39.67 75.6 8.25E+01 2.05E+01i  8.21E+01 2.04E+01 8.15E+01! 1.86E+01 8.90E+H01
30.22 81.88 7.61E+01 1.94E+01! 7.51E+01 1.91E+01i 7.51EH01: 1.78E+01 7.90E+01
24.58 81.68 4.88E+01 2.21E+01! 5.04E+01| - 2.15E+01} 5.16E+01! 1.99E+01 4.20E+01
3252 84.95 8.45E+01 2.49E+01" 8.46E+01 2.47E+01! 8.46E+01! 2.14E+01 8.50E+01
3213 81.2 7.88E+01 2.30E+01:  7.78E+01 2.27E+01 7.68E+01! 2.02E+01 8.10E+01
41.98 87.9 8.83E+01 2.60E+01:  8.84E+01 2.59E+01 8.83E+01] 2.13E+01 9.20E+01
41.53 93.65 9.14E+01 2.97E+01] 9.13E+01 2.95E+01 9.17E+01 2.42E+01 8.90E+01
42.08 87.83 8.80E+01 2.60E+01|  -8.81E+01 2.58E+01 8.80E+01 2.13E+01 9.10E+01
41.45 90.5 9.11E+01 2.82E+01jf  9.09E+01 2.80E+01 8.98E+01 2.33E+01 9.60E+01
40.67 89.68 9.17E+01 2565E+011  9.13E+01 2.52E+01 9.08E+01 2.18E+01 9.60E+01
41 85.2 8.95E+01 2.45E+01 8.96E+01 2.44E+01 9.00E+01 2.12E+01 9.10E+01
38.03 846 9.58E+01 2.52E+01 9.51E+01 2.50E+01 9.48E+01 2.16E+01 9.70E+01
29.98 90.25 7.05E+01 2.12E+H011 7.03E+01 2.09E+01 6.98E+01 1.91E+01 6.90E+01
38.28 76.42 8.30E+01 227E+011  8.22E+01 2.25E+01 8.12E+01 2.01E+01 8.10E+01
45.07 83.57 8.17E+01 3.26E+01]  8.22E+01 3.23EH01 8.28E+01 2.60E+01 8.00E+01
42.97 83.75 8.35E+01 2.59E+01!  8.38E+01 2.56E+01 8.47E+01 2.19E+01 9.00E+01
42.77 84.6 8.41E+01 2.46E+011 8.45E+01 2.44E+01 8.54E+01 211E+01 8.40E+01
46.83 92.18 9.23E+01 3.69E+01i  9.26E+01 3.66E+01 9.43E+01 2.85E+01 8.60E+01
44.88 93.22 9.44E+01 3.13E+01" 9.47E+01 3.10E+01 9.36E+01| 2.53E+01 9.10E+01
38.82 92.22 9.01E+01 3.02E+01" 9.02E+01 3.00E+01 9.12E+01 2.45E+01 9.30E+01
32.32 90.08 7.82E+01 2.89E+01:  7.83E+01 2.87E+01 7.98E+01 2.37E+01 8.00E+01
32.33 88.75 7.95E+01 221E+01.  7.99E+01 2.17E+01; 8.05E+01; 1.96E+01 8.30E+01
35.27 75.55 8.01E+01 3.44E+01. 7.90E+01 3.41E+01, 7.85E+401 2.68E+01 6.90E+01
35.22 80.93 8.71E+01 2.42E+01: 8.78E+01 2.41E+01} 8.80E+01 2.09E+01 8.30E+01
34.9 76.88 8.05E+01 2.50E+01 7.97E+01 2.47E+01! 7.93E+01 2.14E+01 8.20E+01
46.9 96.8 9.94E+01 425E+01.  9.88E+01 4.23E+01} 9.51E+01 3.10E+01 8.80E+01
42.87 100.55 1.03E+02 3.22E+01" 1.03E+02 3.20E+01 1.03E+02 2.56E+01 1.02E+02
39.45 7457 8.34E+01 2.30E+01:  8.28E+01 2.28E+01 8.26E+01 2.03E+01 8.80E+01
42.22 75.98 8.79E+01 2.28E+01! 8.86E+01 2.26E+01 9.26E+01 2.01E+01 9.50E+01
40.65 73.78 8.13E+01 2.04E+01i  8.08E+01 2.00E+01 7.95E+01 1.85E+01 7.10E+01
40.92 81.43 9.06E+01 2.26E+01. 9.09E+01 2.24E401 9.15E+01} 2.00E+01 9.40E+01
354 97.6 8.87E+01 3.19E+01: 8.87E+01 3.17E+01 8.92E+01} 2.52E+01 8.40E+01
42.83 80.18 8.68E+01 257E+01:  8.72E+01 2.55E+01 8.71E+01 2.20E+01 8.80E+01
40.5 80.22 8.99E+01 2.66E+01:  9.01E+01 2.63E+01 9.20E+01 2.24E+01 9.30E+01
35.03 85.2 8.98E+01 2.79E+01:.  9.05E+01 2.77E+01 9.01E+01 2.30E+01 8.80E+01
35.8 84 9.22E+01 278E+01;  9.31E+01 2.77E+01 9.26E+01 2.30E+01 1.01E+02
36.12 86.68 9.05E+01 2.89E+01:  9.03E+01 2.87E+01 8.97E+01 2.37E+01 9.50E+01
32.42 99.68 8.97E+01 2.94E+01! 9.04E+01 2.92E+01 9.17E+01 241E+01 8.90E+01
35.23 101.7 9.70E+01 3.42E+01}  9.84E+01 3.39E+01 1.01E+02 2.68E+01 9.20E+01
259 97.43 7.49E+01 4.30E+01!  7.41E+01 4.27E+01 7.18E+01 3.13E+01 7.40E+01
27.7 97.28 7.60E+01 2.04E+01!  7.51E+01 2.02E+01 7.38E+01 1.87E+01 6.60E+01
32.8 97.03 8.77E+01 2.20E+011  8.69E+01 2.15E+01 8.64E+01 1.96E+01 8.40E+01
29.97 95.35 7.48E+01 2.79E+01]  7.43E+01 2.77E+01 7.46E+01 2.33E+01 7.20E+01
29.53 98.47 8.19E+01 290E+01!  8.18E+01 2.89E+01 8.40E+01 2.39E+01 8.90E+01
33.97 08.48 9.02E+01 3.31E+01!  9.03E+01 3.20E+01 8.91E+01 2.58E+01 9.20E+01
36.93 76.28 8.19E+01 1.856+01]  8.10E+01 1.82E+01 8.10E+01 1.72E+01 7.90E+01
38.95 77.45 8.47E+01 217e+01! 8.39E+01 2.15E+01 8.18E+01] 1.93E+01 9.30E+01
42.95 87.9 8.60E+01 2.53E+01; 8.63E+01 2.52E+01 8.60E+01| 2.15E+01 8.60E+01
37.78 81.12 9.20E+01 2.35E+01!  9.27E+ 2.33E+01 9.65E+01! 2.068E+01 9.10E+01
44.88 63.52 6.85E+01 2.35E+01 6.90E+01 2.31E+01i 7. 11E+01! 2.09E+01 6.80E+01
46.8 71.38 8.63E+01 4.52E+01° 8.57E+01! 4.50E+01 8.51E+01! 3.20E+01 7.50E+01
43.8 69.93 8.62E+01 2.53E+01 8.51E+01! 2.49E+01 8.37E+01" 2.18E+01 9.10E+01
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Temperature

X Y { ESTIMATE | VARIANCE | ESTIMATE | VARIANCE ' ESTIMATE VARIANCE | TEMP
| i Autokriging 121 points Cokriging | 121 points : Cokriging 121456 points Original

3533, 9437, 558E+D1 1.76E+01 5.56E+01 1.74E+01" 5.59E+01 1.72E+01 5.36E+01
34.73: 9223  6.01E+01 2.08E+01 5.98E+01 2.06E+01 . 6.00E+01 2.02E+01 5.72E+01
41.93] 72.68:  3.99E+01 1.06E+01 4.02E+01 1.04E+01: 4.02E+01 1.04E+01 3.86E+01
38.85] 77.031  4.63E+01 4.13E+00 4.70E+01 3.90E+00; 4.62E+01 3.58E+00 4.67E+01
39.67 756 4.38E+01 5.36E+00 4.46E+01 5.07E+00 4.42E+01 4.86E+00 4.35E+01
30.22 81.88)  6.80E+01 3.29E+00 6.83E+01 3.05E+00° 6.83E+01 2.65E+00 6.83E+01
24.58 81.68!  7.58E+01 1.96E+00 7.59E+01 1.58E+00! 7.58E+01 9.13E-01 7.58E+01
3252 8495 6.14E+01 1.05E+01 6.12E+01 1.036+01! 6.13E+01 1.03E+01 6.17E+01
32.13 81.2 6.29E+01 7.38E+00 6.34E+01 7.09E+00: 6.33E+01 7.00E+00 6.38E+01
41.98 879 3.51E+01 1.18E+01 3.52E+01 1.17E+01i 3.53E+01 1.12E+01 3.58E+01
41.53 93.65 3.61E+01 1.62E+01 3.63E+01 1.60E+01{ 3.63E+01 1.59E+01 3.58E+01
42.08 87.83 3.50E+01 1.19E+01 3.51E+01 1.17E+01| 3.52E+01 1.12E+01 3.66E+01
41.45 90.5 3.60E+01 1.45E+01 3.62E+01 1.44E+01i 3.61E+01 1.43E+01 3.56E+H01
40.67 89.68 3.74E+01 9.73EH)0 3.76E+01 9.48E+00 3.76E+01 9.38E+00 3.68E+01
41 85.2| . 3.86E+01 1.04E+01 3.85E+01 1.02E+01 3.85E+01 1.02E+01 3.72E+01
38.03 84.6 4.93E+01 1.05E+01 4.99E+01 1.03E+01 5.01E+01 1.03E+01 5.19E+01
29.98 90.25 6.63E+01 3.93E+00 6.68E+01 3.64E+00 6.64E+01 3.28E+00 6.72E+01
38.28 76.42 4.97E+01 8.29E+00 5.03E+01 8.17E+00 4.99E+01 8.12E+00 4.87E+01
45.07 83.57 3.10E+01 1.86E+01 3.13E+01 1.85E+01 3.14E+01 1.82E+01 3.28E+01
42.97 83.75 3.45E+01 1.08E+01 3.48E+01 1.05E+01 3.48E+01 1.04E+01 3.45E+01
42.77 84.6 3.50E+01 9.59E+00 3.52E+01 9.37E+00 3.53E+01 9.28E+00 3.57E+01
46.83 92.18 2.57E+H1 2.39E+01 2.57E+01 2.37E+011 2.53E+01 2.31E+01 2.48E+01
44.88 93.22i  2.86E+01 1.65E+01 2.84E+01 1.62E+01° 2.84E+01 1.61E+01 3.00E+01
38.82 92.22 4 46E+01 1.68E+01 4.44E+01 1.66E+01" 4.42E+01 1.64E+01 4.30E+01
32.32 90.08 6.45E+01 1.54E+01 6.43E+01 1.53E+01: 6.40E+01 1.52E+01 6.30E+01
32.33 88.75 6.27E+401 4.50E+00 6.23E+01 4.12E+00 6.25E+01 3.80E+00 6.34E+01
35.27 75.55 5.93E+01 2.16E+01 5.98E+01 2. 13E+01, 5.98E+01 2.0B8E+01 5.88E+01
35.22 80.93 5.57TE+01 9.99E+00 5.52E+01 9.82E+00, 5.54E+01 9.81E+00 5.58E+01
34.9 76.88 6.01E+01 8.62E+H00 6.04E+01 8.27E+00: 6.04E+01 8.10E+00 6.16E+01
46.9 96.8 2.69E+01 3.20E+01 2.72E+01 3.28E+01! 2.89E+01 3.10E+01 2.57E+01
42.87 100.55 3.68E+01 1.95E+01 3.66E+01 1.93E+01! 3.63E+01 1.90E+01 3.83E+01
39.45 74.57 4.72E+01 7.57E+00 4.79E+01 7.27E+00 4.79E+01 7.18E+00 4.62E+01
42.22 75.88 3.74E+01 7.63E+00 3.68E+01 7.43E+00° 3.76E+01 7.36E+00 3.52E+01
40.65 73.78 4.41E+01 3.03E+00 4.50E+01 2.64E+00! 4.44E+01 2.20E+00 4.30E+01
40.92 81.43 4.07E+01 6.82E+00 4.04E+01 6.63E+00! 4.08E+01 6.50E+00 4.06E+01
35.4 97.6 5.34E+01 1.90E+1 5.36E+01 1.89E+01! 5.35E+01 1.84E+01 5.29E+01
42.83 80.18 3.59E+01 1.07E+01 3.57E+01 1.05E+01! 3.60E+01 1.05E+01 3.92E+01
40.5 80.22) 4.17E+01 1.15E+01 4.12E+01 1.12E+01: 4.10E+01 1.12E+01 4.14E+01
35.03 852 5.36E+01 1.44E+01 5.29E+01 1.42E+01, 5.30E+01 1.40E+01 5.51E+01
35.8 84 5.21E+01 1.49E+01 5.11E+01 1.47E+01] 5.15E+01 1.46E+01 5.30E+01
36.12 86.68 5.15E+01 1.49E+01 5.16E+01 1.47E+01; 5.17E+01 1.46E+01 5.53E+01
3242 99.68 6.03E+01 1.57E+01 5.97E+01 1.65E+01! 5.97E+01 1.63E+01 6.06E+01
35.23 101.7 5.28E+01 2.01E+01 5.19E+01 1.99E+01! 5.13E+01 1.96E+01 5.22E+01
259 97.43 7.18E+01 3.21E+01 7.27E+01 3.16E+01! 7.33E+01 3.01E+01 7.25E+01
27.7 97.28 7.00E+01 3.96E+00 7.06E+01 3.63E+00 7.01E+01 3.23E+00 6.80E+01
32.9 97.03 6.09E+01 3.38E+00 6.11E+01 2.94E+00 6.10E+01 2.48E+00 6.05E+01
28.97 95.35 6.66E+01 1.36E+01 6.70E+01 1.34E+01} 6.70E+01 1.34E+01 6.80E+01
29.53 98.47 6.68E+01 1.57E+01 6.66E+01 1.54E+01| 6.61E+01 1.53E+01 6.60E+01
33.97 98.48 5.71E+01 2.12E+01 5.69E+01 2.10E+01| 5.68E+01 2.03E+01 5.72E+01
36.93 76.28 5.59E+01 1.97E+00 5.63E+01 1.57E+00! 5.50E+01 9.94E-01 5.61E+01
38.95 77.45 4.57E+01 5.88E+00 4.65E+01 5.64E+00; 4.58E+01 5.45E+00 4.39E+01
42.95 87.9 3.37E+01 1.13E+01 3.39E+01 1.12E+01! 3.38E+01 1.10E+01 3.46E+01
37.78| 81.12 5.07E+01 8.03E+00 5.01E+01 7.82E+00, 5.10E+01 7.75E+00 4.60E+01
4488 63.52 3.66E+01 4.38E+00 3.65E+01 4.01E+00: 3.72E+01 3.63E+00 3.58E+01
46.8 171.38: 3.18E+01 3.74E+01 3.21E+01 3.72E+01! 3.25E+01 3.47E+01 2.80E+01
43.9; 69.93!  3.63E+01 7.49E+00 3.70E+01 7 07E+00° 3.68E+01 6.94E+00;  3.54E+01
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